ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Curtis Walters, Ethan Alger, Suhas Bhandarkar, Kurt Boehm, Tom Braun, Francisco Espinosaloza, Benjamin Haid, Ricardo Heredia, John Kline, Bernard Kozioziemski, Jeremy Kroll, Daniel Malone, Abbas Nikroo, Patrick Opsahl, James Sater, Alex Zylstra
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 305-314
Technical Paper | doi.org/10.1080/15361055.2017.1397488
Articles are hosted by Taylor and Francis Online.
Experiments at the National Ignition Facility (NIF) using targets containing a deuterium-tritium (D-T) fuel layer have, until recently, required that a high-quality layer of solid D-T (herein referred to as an ice layer) be formed in the capsule. The development of a process to line the inner surface of a target capsule with a foam layer of a thickness that is typical of ice layers has resulted in the ability to field targets with liquid layers wetting the foam. Successful fielding of liquid-layer targets on NIF required not only a foam-lined capsule but also changes to the capsule filling process and the manner with which the inventory is maintained in the capsule. Additionally, changes to target heater power and the temperature drops across target components were required in order to achieve the desired range of shot temperatures. These changes and the target’s performance during four target shots on NIF are discussed.