ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
S. O. Kucheyev, J. M. Lenhardt
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 293-297
Technical Paper | doi.org/10.1080/15361055.2017.1392205
Articles are hosted by Taylor and Francis Online.
Liquid hydrogen confined in pores of nanofoams crystallizes at lower temperatures than in the unconfined, bulk state. Here, we summarize results of our recent systematic relaxation calorimetry studies of the liquid–solid phase transition of hydrogen and deuterium in various materials with open-cell pores. These include spinodal-decomposition-derived silica glasses and nanoporous gold, conventional silica aerogels, and carbon foams with ligaments made from nanotubes and graphene sheets, all of which were studied previously. We present new hydrogen thermoporometry data for polymeric norbornene-based aerogels. Results show that hydrogen freezing temperatures inside all the porous materials studied are depressed. The average depression of the freezing point scales linearly with the ratio of the internal surface area to the pore volume. The average freezing point depression is limited to ≲1.6 K for foams with monolith densities ≲50 mg·cm. Details of the freezing behavior, however, depend nontrivially on the choice of the porous material and on the hydrogen-filling fraction, reflecting phenomena that are beyond the Gibbs-Thomson formalism and pointing to the complexity of pore architectures in the low-density materials of interest to thermonuclear fusion energy applications.