ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
January 2023
Latest News
Framatome, Ultra Safe partner to manufacture TRISO and FCM fuel
Framatome and Ultra Safe Nuclear announced on January 26 that they intend to form a joint venture to manufacture commercial quantities of tristructural isotropic (TRISO) particles and Ultra Safe’s proprietary fully ceramic microencapsulated (FCM) fuel.
The companies have signed a nonbinding agreement to integrate their resources to bring commercially viable, fourth-generation nuclear fuel to market for Ultra Safe’s micro-modular reactor (MMR) and other advanced reactor designs.
J. W. Crippen, E. L. Alfonso, N. G. Rice, C. Kong, M. McInnis, S. Felker
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 285-292
Technical Paper | doi.org/10.1080/15361055.2017.1391661
Articles are hosted by Taylor and Francis Online.
Capsule fill tube assemblies (CFTAs) consist of an ablator capsule and fill tube via a laser-drilled funnel hole. This hole tapers from 17-μm diameter at the outer surface of the ablator capsule to less than 5-μm diameter on the inside of the capsule over approximately 200 μm of wall thickness. Demand for better understanding of the fill tube perturbation during the capsule implosion has driven advancements in the fill tube design. Engineering efforts have been made on hydrodynamic growth radiography assemblies (HGRs) using multiple tube-design variations, including alternative angles, depths, sizes, and location with engineered defects to showcase fill tube effects during an implosion. Testing has shown that these CFTAs and HGRs have survived all fabrication and transport to and from General Atomics (GA) to Lawrence Livermore National Laboratory. These assemblies have also passed cryogenic testing at GA. An overview of alternative CFTA designs, fabrication methods, and developments is presented.