ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
Fusion Science and Technology
January 2026
Latest News
From uncertainty to vitality: The future of nuclear energy in Illinois
Nuclear is enjoying a bit of a resurgence. The momentum for reliable energy to support economic development around the country—specifically data centers and AI—remains strong, and strongly in favor of nuclear. And as feature coverage on the states in the January 2026 issue of Nuclear News made abundantly clear, many states now see nuclear as necessary to support rising electricity demand while maintaining a reliable grid and reaching decarbonization goals.
J. W. Crippen, E. L. Alfonso, N. G. Rice, C. Kong, M. McInnis, S. Felker
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 285-292
Technical Paper | doi.org/10.1080/15361055.2017.1391661
Articles are hosted by Taylor and Francis Online.
Capsule fill tube assemblies (CFTAs) consist of an ablator capsule and fill tube via a laser-drilled funnel hole. This hole tapers from 17-μm diameter at the outer surface of the ablator capsule to less than 5-μm diameter on the inside of the capsule over approximately 200 μm of wall thickness. Demand for better understanding of the fill tube perturbation during the capsule implosion has driven advancements in the fill tube design. Engineering efforts have been made on hydrodynamic growth radiography assemblies (HGRs) using multiple tube-design variations, including alternative angles, depths, sizes, and location with engineered defects to showcase fill tube effects during an implosion. Testing has shown that these CFTAs and HGRs have survived all fabrication and transport to and from General Atomics (GA) to Lawrence Livermore National Laboratory. These assemblies have also passed cryogenic testing at GA. An overview of alternative CFTA designs, fabrication methods, and developments is presented.