ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
N. Rice, M. Vu, C. Kong, M. Mauldin, A. Tambazidis, M. Hoppe, Jr., P. Fitzsimmons, M. Farrell, D. Clark, E. Dewald, V. Smalyuk
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 279-284
Technical Paper | doi.org/10.1080/15361055.2017.1389603
Articles are hosted by Taylor and Francis Online.
Capsule drive in National Ignition Facility indirect-drive implosions is generated by X-ray illumination from cylindrical hohlraums. The cylindrical hohlraum geometry is axially symmetric but not spherically symmetric, causing capsule–fuel drive asymmetries. It is hypothesized that fabricating capsules asymmetric in wall thickness (shimmed) may compensate for drive asymmetries and improve implosion symmetry. Simulations suggest that for high-compression implosions, Legendre mode P4 hohlraum flux asymmetries are the most detrimental to implosion performance.
General Atomics has developed a diamond-turning method to form a glow discharge polymer capsule outer surface to a Legendre mode P4 profile. The P4 shape requires full capsule surface coverage. As a result, in order to avoid tool-lathe interference, flipping the capsule part way through the machining process is required. This flipping process risks misalignment of the capsule, causing a vertical step feature on the capsule surface. Recent trials have proven this step feature height can be minimized to ~0.25 µm.