ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
Latest News
University of Florida–led consortium to research nuclear forensics
A 16-university team of 31 scientists and engineers, under the title Consortium for Nuclear Forensics and led by the University of Florida, has been selected by the Department of Energy’s National Nuclear Security Administration (NNSA) to develop the next generation of new technologies and insights in nuclear forensics.
M. Stadermann, C. Aracne-Ruddle, J. Florio, S. Felker, J. Bigelow, S. Johnson, B. Lairson, J. Betcher
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 273-278
Technical Paper | doi.org/10.1080/15361055.2017.1372989
Articles are hosted by Taylor and Francis Online.
Capsules in National Ignition Facility targets are conventionally supported by thin polymer films. Recent experiments have shown that these films add significant perturbations to the implosion. Here, we evaluate stiffer polyimide composite films for use in a new target design that has been predicted to reduce these perturbations. The films are evaluated by their contact radius to the capsule for different deflections and the force they generate at those deflections to center the capsule. We find that a composite film with a single-sided coating of carbon produces the best results and show the performance of these films in target assemblies, highlighting the importance of the indentation depth.