ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Yuki Iwasa, Kohei Yamanoi, Yumi Kaneyasu, Takayoshi Norimatsu
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 258-264
Technical Paper | doi.org/10.1080/15361055.2017.1372988
Articles are hosted by Taylor and Francis Online.
We report the controllable generation of double emulsions for target fabrication using glass capillary microfluidic devices. Instead of a conventional triple-orifice droplet generator, user-friendly glass capillary devices are used to produce micrometer to millimeter-sized water-in-oil-in-water emulsions. The double emulsions have a relatively uniform size distribution with an average outer diameter of 1420 μm. The sizes of the emulsions can also be varied by changing the ratio of the inner, middle, and outer fluids. Increasing the flow rate ratio of the outer fluid to the other fluids [Qo/(Qm+Qi)] from 3 to 11, the outer radii of the emulsions decrease from 1120 to 950 μm. On the other hand, increasing the flow rate ratio of the middle fluid to the inner fluid (Qm/Qi) from 0.7 to 1.6, the aspect ratio of the emulsions increases from 4 to 8. Our experimental values are in good agreement with a simple theoretical model. These results suggest that our present method to control the generation of double emulsions can be used as an alternative approach to fabricate polystyrene targets for future laser fusion experiments.