ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
Latest News
University of Florida–led consortium to research nuclear forensics
A 16-university team of 31 scientists and engineers, under the title Consortium for Nuclear Forensics and led by the University of Florida, has been selected by the Department of Energy’s National Nuclear Security Administration (NNSA) to develop the next generation of new technologies and insights in nuclear forensics.
B. P. Chock, D. R. Harding, T. B. Jones
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 237-247
Technical Paper | doi.org/10.1080/15361055.2017.1378013
Articles are hosted by Taylor and Francis Online.
Surfactant-containing water droplets were produced using a 75-Vrms pondermotive force operating at 10 kHz. Heat from a 30-V direct-current source, applied to a 2 × 0.1-mm region of the fluid, was instrumental in rupturing a low-surface-energy liquid membrane and forming the droplet. The low voltage allows quick and accurate dispensing of droplets without dielectric breakdown. Nanoliter-sized (~7.6-nL) butanol-styrene droplets were formed using 133 Vrms at 900 Hz. Microliter-sized oil droplets (~0.6 to 10.5 μL) were formed using high voltage (460 to 672 Vrms at 100 Hz). Oil-water emulsions were formed and moved horizontally, overcoming frictional and surface tension forces. Large oil droplets were also moved to a wider electrode spacing, where the emulsion can take the spherical shape of a target. This was only achieved by transporting the emulsion down an inclined slope (45 deg) using gravity to augment the electric force. All the steps are in place to form targets from oil-water-oil and water-oil-water emulsions; only the dielectrophoretic centering and polymerization processes, which were demonstrated previously, must be added.