ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
American Fuel Resources requests license for N.M. uranium deconversion plant
American Fuel Resources, a provider a nuclear fuel cycle solutions headquartered in Spokane, Wash., has submitted an application to the Nuclear Regulatory Commission requesting transfer of a materials license from Idaho-based radioisotope manufacturer International Isotopes for a depleted uranium hexafluoride (DUF6) deconversion plant in Lea County, N.M.
B. P. Chock, D. R. Harding, T. B. Jones
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 237-247
Technical Paper | doi.org/10.1080/15361055.2017.1378013
Articles are hosted by Taylor and Francis Online.
Surfactant-containing water droplets were produced using a 75-Vrms pondermotive force operating at 10 kHz. Heat from a 30-V direct-current source, applied to a 2 × 0.1-mm region of the fluid, was instrumental in rupturing a low-surface-energy liquid membrane and forming the droplet. The low voltage allows quick and accurate dispensing of droplets without dielectric breakdown. Nanoliter-sized (~7.6-nL) butanol-styrene droplets were formed using 133 Vrms at 900 Hz. Microliter-sized oil droplets (~0.6 to 10.5 μL) were formed using high voltage (460 to 672 Vrms at 100 Hz). Oil-water emulsions were formed and moved horizontally, overcoming frictional and surface tension forces. Large oil droplets were also moved to a wider electrode spacing, where the emulsion can take the spherical shape of a target. This was only achieved by transporting the emulsion down an inclined slope (45 deg) using gravity to augment the electric force. All the steps are in place to form targets from oil-water-oil and water-oil-water emulsions; only the dielectrophoretic centering and polymerization processes, which were demonstrated previously, must be added.