ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Tom Braun, Sung Ho Kim, Monika M. Biener, Alex V. Hamza, Juergen Biener
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 229-236
Technical Paper | doi.org/10.1080/15361055.2017.1392203
Articles are hosted by Taylor and Francis Online.
Spherical ablator shells that contain a thin layer of ultralow-density polymer foam have recently attracted attention in the inertial confinement fusion (ICF) community as they can be used to bring dopants for diagnostics and nuclear physics experiments in direct contact with the deuterium-tritium (DT) fuel or to study new ignition regimes by enabling the formation of uniform liquid DT fuel layers. We developed a method to fabricate these foam-lined ablator shells using a prefabricated ablator as a mold to cast the foam liner within the shell. One crucial component of this new approach is the removal of solvent from the ablator shells without collapsing the ultralow-density porous polymer network. Here, we report on a supercritical drying approach with liquid carbon dioxide that provides critical information on how to produce thin layers of low-density polymer foams in ablator shells for ICF experiments. Diffusion experiments were used to study the time required for complete solvent exchange in 2-mm-inner-diameter diamond shells and the data were used to demonstrate the fabrication of uniform porous polymer films inside ablator shells.