ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Tom Braun, Sung Ho Kim, Monika M. Biener, Alex V. Hamza, Juergen Biener
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 229-236
Technical Paper | doi.org/10.1080/15361055.2017.1392203
Articles are hosted by Taylor and Francis Online.
Spherical ablator shells that contain a thin layer of ultralow-density polymer foam have recently attracted attention in the inertial confinement fusion (ICF) community as they can be used to bring dopants for diagnostics and nuclear physics experiments in direct contact with the deuterium-tritium (DT) fuel or to study new ignition regimes by enabling the formation of uniform liquid DT fuel layers. We developed a method to fabricate these foam-lined ablator shells using a prefabricated ablator as a mold to cast the foam liner within the shell. One crucial component of this new approach is the removal of solvent from the ablator shells without collapsing the ultralow-density porous polymer network. Here, we report on a supercritical drying approach with liquid carbon dioxide that provides critical information on how to produce thin layers of low-density polymer foams in ablator shells for ICF experiments. Diffusion experiments were used to study the time required for complete solvent exchange in 2-mm-inner-diameter diamond shells and the data were used to demonstrate the fabrication of uniform porous polymer films inside ablator shells.