ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Tom Braun, Sung Ho Kim, Monika M. Biener, Alex V. Hamza, Juergen Biener
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 229-236
Technical Paper | doi.org/10.1080/15361055.2017.1392203
Articles are hosted by Taylor and Francis Online.
Spherical ablator shells that contain a thin layer of ultralow-density polymer foam have recently attracted attention in the inertial confinement fusion (ICF) community as they can be used to bring dopants for diagnostics and nuclear physics experiments in direct contact with the deuterium-tritium (DT) fuel or to study new ignition regimes by enabling the formation of uniform liquid DT fuel layers. We developed a method to fabricate these foam-lined ablator shells using a prefabricated ablator as a mold to cast the foam liner within the shell. One crucial component of this new approach is the removal of solvent from the ablator shells without collapsing the ultralow-density porous polymer network. Here, we report on a supercritical drying approach with liquid carbon dioxide that provides critical information on how to produce thin layers of low-density polymer foams in ablator shells for ICF experiments. Diffusion experiments were used to study the time required for complete solvent exchange in 2-mm-inner-diameter diamond shells and the data were used to demonstrate the fabrication of uniform porous polymer films inside ablator shells.