ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Randall B. Randolph, John A. Oertel, Tana Cardenas, Christopher E. Hamilton, Derek W. Schmidt, Brian M. Patterson, Franklin Fierro, Deanna Capelli
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 187-193
Technical Paper | doi.org/10.1080/15361055.2017.1356196
Articles are hosted by Taylor and Francis Online.
A new method has been developed to dry-machine foams. Most of these foams are at the lower end of what is considered machineable because of their density or foam composition. Excluding aerogel foams, the foams traditionally required a wax-fill process before surviving any machining forces. This new dry-machining method uses a technique called turn-milling and replaces the old wax-fill method that added several weeks to the fabrication schedule and uncertainty in the quality of the final part. The new method utilizes a computer numerical control gang-tool–style lathe that is set up with electric live-tooling spindles. The foams are dry-machined with the lathe main spindle turning in the opposite direction of the live-tooling spindle. This turn-milling technique reduces tool pressure and can accommodate heavier roughing cuts that produce much faster cycle times. With this new dry-machining method we are able to machine the entire foam target component in one operation, eliminating the need for another machining operation for finishing the backside.