ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
January 2023
Latest News
Framatome, Ultra Safe partner to manufacture TRISO and FCM fuel
Framatome and Ultra Safe Nuclear announced on January 26 that they intend to form a joint venture to manufacture commercial quantities of tristructural isotropic (TRISO) particles and Ultra Safe’s proprietary fully ceramic microencapsulated (FCM) fuel.
The companies have signed a nonbinding agreement to integrate their resources to bring commercially viable, fourth-generation nuclear fuel to market for Ultra Safe’s micro-modular reactor (MMR) and other advanced reactor designs.
Matthew J. Herman, Dominic Peterson, Kevin Henderson, Tana Cardenas, Christopher E. Hamilton, John Oertel, Brian M. Patterson
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 166-172
Technical Paper | doi.org/10.1080/15361055.2017.1387454
Articles are hosted by Taylor and Francis Online.
Understanding deuterium-tritium mix in capsules is critical to achieving fusion within inertial confined fusion experiments. One method of understanding how the mix of hydrogen fuels can be controlled is by creating various structured deuterated foams and filling the capsule with liquid tritium. Historically, these materials have been a stochastically structured gas-blown foam. Later, to improve the uniformity of this material, pore formers have been used which are then chemically removed, leaving behind a foam of monodisperse voids. However, this technique is still imperfect in that fragments of the pore templating particles may not be completely removed and the void distribution may not be uniform over the size scale of the capsule. Recently, advances in three-dimensional printing suggest that it can be used to create microlattices and capsule walls in one single print. Demonstrated here are proof-of-concept microlattices produced using two-photon polymerization with submicrometer resolution of various structures as well as a microlattice-containing capsule. With this technology, complete control of the mixing structure is possible, amenable to modeling and easily modified for tailored target design.