ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
O. Stein, Y. Liu, J. Streit, J. H. Campbell, Y. F. Lu, Y. Aglitskiy, N. Petta
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 153-165
Technical Paper | doi.org/10.1080/15361055.2017.1406237
Articles are hosted by Taylor and Francis Online.
Low-density foam targets were fabricated by direct laser writing using two-photon polymerization (2PP). The targets were used in high-energy-density shock-propagation experiments carried out on the NIKE laser system at the Naval Research Laboratory (NRL). The basic target comprised a rectilinear foam rod with a log-pile-like microstructure with overall dimensions of 2000 × 250 × 315 μm3 and a nominal density of ~100 mg/cm3. The foam block is topped with a 15-μm-thick, full-density ablation layer that is integrated into the 2PP printing process. The main challenge in fabricating the foam targets comes in maintaining dimensional and structural stability during 2PP postprocessing particularly during development, drying, and release from the substrate. Twelve 2PP foam rods were characterized and then built into targets. The characterization data show shrinkage of ~5% to 15% in overall dimensions attributed mainly to shrinkage of the acrylic resin (IP-Dip). Continuing development shows that use of the more stable IP-S commercial resin leads to significantly improved foam structure stability, reduced shrinkage, and a lower number of inherently weak stitching boundaries. The 12 targets provided to NRL have been shot; an example of the type of data obtained is presented.