ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
K. Tomlinson, C. T. Seagle, H. Huang, G. E. Smith, J. L. Taylor, R. R. Paguio
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 139-148
Technical Paper | doi.org/10.1080/15361055.2017.1387449
Articles are hosted by Taylor and Francis Online.
A measurement instrument utilizing dual, chromatic, confocal, distance sensors has been jointly developed by General Atomics and Sandia National Laboratories (SNL) for thickness and flatness measurement of target components used in dynamic materials properties (DMP) experiments on the SNL Z-Machine (Z). Compared to previous methods used in production of these types of targets, the tool saves time and yields a 4× reduction in thickness uncertainty which is one of the largest sources of error in equation of state measurements critical to supporting the National Nuclear Security Administration Stockpile Stewardship program and computer modeling of high energy density experiments. It has numerous differences from earlier instruments operating on the dual confocal sensor principle to accommodate DMP components including larger lateral travel, longer working distance, ability to measure flatness in addition to thickness, built-in thickness calibration standards for quickly checking calibration before and after each measurement, and streamlined operation. Thickness and flatness of 0.2- to 3.3-mm-thick sections of diamond-machined copper and aluminum can be measured to submicron accuracy. Sections up to 6 mm thick can be measured with as-yet undetermined accuracy. Samples must have one surface which is flat to within 300 µm, lateral dimensions of no more than 50 ×50 mm, and height less than 40 mm.