ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Alexandre Choux, Lise Barnouin, Ludovic Reverdy, Marc Theobald
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 127-131
Technical Paper | doi.org/10.1080/15361055.2017.1406247
Articles are hosted by Taylor and Francis Online.
Targets experimented on the Laser Megajoule (LMJ) facility are composed of amorphous hydrogenated carbon capsules. Some of them present rippled surface features like sinusoidal functions. Other experimented targets are hohlraum-containing capsules. The main difficulty when analyzing the machined capsules is to characterize the feature’s orientation and the sinusoidal shape featured in the capsule thickness by laser machining. For the capsule enclosed by the hohlraum, the main challenge is to characterize the capsule centering inside the assembled hohlraum. X-ray tomography is used to realize measurement, and obtained results are presented in this paper.