ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
T. Bernat, C. Castro, A. Pasternak, J. Sin, O. Stein, N. Petta
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 119-126
Technical Paper | doi.org/10.1080/15361055.2017.1406236
Articles are hosted by Taylor and Francis Online.
The University of Rochester Laboratory for Laser Energetics Laser Direct-Drive 100-Gbar Campaign requires fuel capsules with specified limits on the number of localized surface defects in the 0.1- to 1-µm range. Schafer Livermore Laboratory has applied techniques of bright-field conventional imaging and charge-coupled-device–based dark-field microscopy as a possible method of characterizing the number and sizes of local particle-like defects on these capsules. Through simple experiments, we are able to correlate measured localized light-scattering levels with sizes of spherical polystyrene test particles. We have developed an engineering concept for whole-surface capsule scans based on quantitative dark-field microscopy as well as conventional imaging microscopy. This system and technique will be particularly useful during capsule development and capsule handling (transport, assembly, etc.) investigations.