ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
H. Huang, K. Engelhorn, K. Sequoia, A. Greenwood, W. Sweet, L. Carlson, F. Elsner, M. Farrell
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 98-106
Technical Paper | doi.org/10.1080/15361055.2017.1387460
Articles are hosted by Taylor and Francis Online.
The 100-Gbar Laser Direct Drive program calls for ablator capsules with no defects larger than 0.5 μm in lateral dimension and fewer than ten defects with lateral dimensions between 0.1 and 0.5 μm. Compared to laser indirect drive capsules, this represents > 10× reduction of defect length scale and >500× reduction in defect number density. This presents major challenges to both fabrication and metrology. In this paper, we will discuss the proof-of-principle work conducted at General Atomics to identify metrology techniques suitable for 100-Gbar target characterization. We present a detailed study of dark-field imaging, laser scatterometry, and environmental scanning electron microscopey. We identify dark-field imaging as the best approach for meeting the 100-Gbar metrology needs.