ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
L. A. El-Guebaly, H. Y. Khater
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1589-1593
Fusion Power Plants and Economics | doi.org/10.13182/FST96-A11963178
Articles are hosted by Taylor and Francis Online.
Recent interest in the low aspect ratio (LAR) concept has led the U.S. ARIES team to examine the credibility of this advanced concept as a future source of fusion energy. The compactness of the LAR machine imposes severe constraints on the Cu center post (CP) which thus plays an important role in the design. In view of the fact that the machine operates for 40 y with a relatively high neutron wall loading of 4 MW/m2, the CP will be operating in a severe radiation environment for an extended period of time. The analysis indicated that the lifetime of the CP is limited by the Class C low level waste disposal requirements. Identification of potential radioactive waste problems for the Cu conductor has resulted in either limiting the lifetime of the unshielded CP to 0.12 FPY (corresponding to a fluence of 0.3 MWy/m2) or shielding the CP with 20-30 cm of shield. Since it is not feasible to replace hundreds of tonnes of Cu every 2 months, the CP should be shielded to prolong the lifetime to 4 years or more, reduce the cumulative radwaste and replacement cost, increase the system availability, and alleviate most of the CP radiation damage problems. We have assessed the effects of neutron fluence on conductor resistivity, swelling, and atomic displacement. Even though the radiation-induced swelling and changes to Cu resistivity due to transmutations are small at 0.3 MWy/m2, there is serious concern about the degradation of properties as all Cu alloys experience hardening and loss of ductility under neutron irradiation.