ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
H. Y. Khater, L. J. Wittenberg
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1584-1588
Fusion Power Plants and Economics | doi.org/10.13182/FST96-A11963177
Articles are hosted by Taylor and Francis Online.
LIBRA-SP is a 1000 MWe light ion beam power reactor design study. The reactor structure is made of a low activation ferritic steel and uses LiPb as a breeder. The total activities in the blanket and reflector at shutdown are 721 MCi and 924 MCi, respectively. Hands-on maintenance is impossible anywhere inside the reactor chamber. The biological dose rates near the diode are too high at all times following shutdown allowing only for remote maintenance. The blanket and reflector could qualify for disposal as Class C low level waste. The dose to the maximally exposed individual in the vicinity of the reactor site due to the routine release of tritium is about 2.39 mrem/yr. Ten hours after a loss of coolant accident, the reflector produces a whole body (WB) early dose at the site boundary of 253 mrem. The blanket would produce a WB early dose of 8.91 rem. The potential off-site dose produced by the mobilization of LiPb during an accident is 142 mrem. A 100% release of the vulnerable tritium inventory present in the containment at any moment results in a WB early dose of 459 mrem. Release of the vulnerable tritium inventories present in the target factory and fuel reprocessing facility during an accident would result in WB early doses of 1.3 and 0.95 rem, respectively.