ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Disease-resistant cauliflower created through nuclear science
International Atomic Energy Agency researchers have helped scientists on the Indian Ocean island nation of Mauritius to develop a variety of cauliflower that is resistant to black rot disease. The cauliflower was developed through innovative radiation-induced plant-breeding techniques employed by the Joint Food and Agriculture Organization (FAO)/IAEA Centre of Nuclear Techniques in Food and Agriculture.
J.J. MacFarlane, M. E. Sawan, G. A. Moses, P. Wang, R. E. Olson
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1569-1573
Fusion Power Plants and Economics | doi.org/10.13182/FST96-A11963174
Articles are hosted by Taylor and Francis Online.
Results from numerical simulations are presented describing the explosion energetics of a high-gain indirect-drive ICF target. The light ion fusion LIBRA-SP target, which consists of an x-ray driven capsule embedded in a spherical foam-filled hohlraum, is imploded using 12 prepulse and 12 full power Li beams containing a total energy of 8 MJ. Here, we report on the dynamics of the target energy release, focussing in particular on the partitioning of energy between x rays, neutrons, and target debris kinetic energy. Our results indicate that 72% and 22% of the 552 MJ yield is emitted by the target in the form of neutrons and x-rays, respectively. Calculated emergent spectra for the target neutrons and x rays are also presented.