ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
R. A. Anderl, R. J. Pawelko, M. A. Oates, G. R. Smolik, K. A. McCarthy
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1435-1441
Safety and Environment | doi.org/10.13182/FST96-A11963150
Articles are hosted by Taylor and Francis Online.
This paper describes an experimental system developed to investigate steam-metal reactions important to fusion technology. The system is configured specifically to measure hydrogen generation rates and tritium mobilization rates for irradiated beryllium specimens that are heated and exposed to steam. Results are presented for extensive performance and scoping tests of the system to validate the experimental technique, to determine hydrogen-generation rate detection sensitivity, and to establish appropriate calibration methods. These results include measurements of the hydrogen generation rates for steam interactions with austenitic steel, tungsten and beryllium metal specimens. The results of these scoping tests compare favorably with previous work, and they indicate a significant improvement in hydrogen detection sensitivity over previous approaches.