ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
R.D. Stambaugh, V.S. Chan, P.A. Anderson, C.B. Baxi, R.W. Callis, H.K. Chiu, C.B. Forest, R. Hong, T.K. Jensen, L.L. Lao, J.A. Leuer, M.A. Mahdavi, R.L. Miller, A. Nerem, R. Prater, P.A. Politzer, M.J. Schaffer, D.L. Sevier, T.S. Taylor, A.D. Turnbull, C.P.C. Wong
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1380-1389
Innovative Approaches to Fusion Energy | doi.org/10.13182/FST96-A11963141
Articles are hosted by Taylor and Francis Online.
The low aspect ratio tokamak or spherical torus (ST) approach offers the two key elements needed to enable magnetic confinement fusion to make the transition from a government-funded research program to the commercial marketplace: a low cost, low power, small size market entry vehicle and a strong economy of scale in larger devices. Within the ST concept, a very small device (A = 1.4, major radius about 1 m, similar size to the DIII-D tokamak) could be built that would produce ~800 MW thermal, 250 MW net electric, and would have a gain, defined as QPLANT = (gross electric power/recirculating power), of about 2. Such a device would have all the operating systems and features of a power plant and would therefore be acceptable as a pilot plant, even though the cost of electricity would not be competitive. The ratio of fusion power to copper TF coil dissipation rises quickly with device size (like R4) and can lead to 3 GW thermal power plants with QPLANT = 4-5 but which remain a factor 3 smaller than superconducting tokamak power plants. Power plants of the scale of ITER might be able to burn the advanced fuel D-He3.