ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
W. P. Steckle, Jr., M. E. Smith, R. J. Sebring, A. Nobile, Jr.
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 74-78
Technical Paper | Target Fabrication | doi.org/10.13182/FST04-A430
Articles are hosted by Taylor and Francis Online.
High Internal Phase Emulsion (HIPE) polystyrene foams have been made at LANL for the past decade. It is a robust system that offers flexibility in tailoring density and the incorporation of halogens and metals. As target designs become more complex the demands placed on the foams are more stringent. Parts are machined from 30 mg/cm3 foams to thicknesses of 50 m. At three percent of full density these foams are to withstand extraction with ethanol to remove the wax utilized as a machining aid and not allow shrinkage or warpage. In order to accomplish this the formulation of the HIPE foam had to be modified. Recently some new processing issues have arisen. At low densities voids have become a problem. To determine a formulation that reduces void content and allows minimum shrinkage, experimental design was utilized. We also developed image analysis techniques that allow us to quantify the amount of voids in the system. These techniques also allow us to evaluate the surface finish of the foam. In order to machine these low density foams to the tolerance required with an optimum surface finish the foams are backfilled with Brij 78, an alcohol soluble wax. After the part is machined, the Brij is leached out. Recent batches of Brij have exhibited high shrinkage, which in turn affects the surface finish of the foam.