ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
W. P. Steckle, Jr., M. E. Smith, R. J. Sebring, A. Nobile, Jr.
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 74-78
Technical Paper | Target Fabrication | doi.org/10.13182/FST04-A430
Articles are hosted by Taylor and Francis Online.
High Internal Phase Emulsion (HIPE) polystyrene foams have been made at LANL for the past decade. It is a robust system that offers flexibility in tailoring density and the incorporation of halogens and metals. As target designs become more complex the demands placed on the foams are more stringent. Parts are machined from 30 mg/cm3 foams to thicknesses of 50 m. At three percent of full density these foams are to withstand extraction with ethanol to remove the wax utilized as a machining aid and not allow shrinkage or warpage. In order to accomplish this the formulation of the HIPE foam had to be modified. Recently some new processing issues have arisen. At low densities voids have become a problem. To determine a formulation that reduces void content and allows minimum shrinkage, experimental design was utilized. We also developed image analysis techniques that allow us to quantify the amount of voids in the system. These techniques also allow us to evaluate the surface finish of the foam. In order to machine these low density foams to the tolerance required with an optimum surface finish the foams are backfilled with Brij 78, an alcohol soluble wax. After the part is machined, the Brij is leached out. Recent batches of Brij have exhibited high shrinkage, which in turn affects the surface finish of the foam.