ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Experimenters get access to NSUF facilities for irradiation effects studies
The Department of Energy’s Office of Nuclear Energy announced the recipients of “first call” 2025 Nuclear Science User Facilities (NSUF) Rapid Turnaround Experiment (RTE) awards on June 26. The 23 proposals selected from industry, national laboratories, and universities will receive a total of about $1.4 million. While each project is led by a different principal investigator, some call the same organization home. A total of 17 companies, labs, and universities are represented.
W. M. Stacey, J. P. Aldridge, R. L. Beilke, L. G. Bryson, E. P. Davidson, T. A. Deterding, J. G. Evans, E. M. Fort, R. D. Jeffcoat, S. Klima, M. T. McLain, A. D. Nielsen, M. J. O'Neill, G. Y. Poe, H. U. Rehman, B. H. Rose, G. M. Roach, A. O. Rodriguez, R. T. Still, D. D. Thomas, M. P. Valenzano
Fusion Science and Technology | Volume 33 | Number 4 | July 1998 | Pages 443-455
Technical Paper | doi.org/10.13182/FST98-A43
Articles are hosted by Taylor and Francis Online.
A design concept for a fusion neutron source-based tritium production reactor has been developed, where liquid Li is used as the coolant and tritium breeder and V-4 Cr-4 Ti is used as the structural material. The fusion neutron source is predicated on the physics and technology that will be demonstrated in the International Thermonuclear Experimental Reactor (ITER). The present design can produce 2 kg/yr excess tritium for weapons replenishment operating at fusion power levels of 300 to 750 MW and with corresponding plant availability factors of 25 to 10%. No structural component should fail as a result of radiation damage during the 40-yr lifetime of the reactor, and it should be possible to dispose of the radioactive waste created upon decommissioning as low-level waste that qualifies for shallow land burial. A fusion tritium production reactor based on ITER physics and technology would seem to be a realistic option for satisfying the nation's tritium production needs.