ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Peter T. Sheehey, Joyce A. Guzik, Ronald C. Kirkpatrick, Irvin R. Lindemuth, David W. Scudder, Jack S. Shlachter, Frederick J. Wysocki
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1355-1359
Innovative Approaches to Fusion Energy | doi.org/10.13182/FST96-A11963137
Articles are hosted by Taylor and Francis Online.
In Magnetized Target Fusion (MTF), a preheated and magnetized target plasma is hydrodynamically compressed to fusion conditions.1,2 Because the magnetic field suppresses losses by electron thermal conduction in the fuel during the target implosion heating process, the compression may be over a much longer time scale than in traditional inertial confinement fusion (ICF). Bigger targets and much lower initial target densities than in ICF can be used, reducing radiative energy losses. Therefore, “liner-on-plasma” compressions, driven by relatively inexpensive electrical pulsed power, may be practical. Potential MTF target plasmas must meet minimum temperature, density, and magnetic field starting conditions, and must remain relatively free of high-Z radiation-cooling-enhancing contaminants. At Los Alamos National Laboratory, computational and experimental research is being pursued into MTF target plasmas, such as deuterium-fiber-initiated Z-pinches,3 and the Russian-originated “MAGO” plasma.4 In addition, liner-on-plasma compressions of such target plasmas to fusion conditions are being computationally modeled, and experimental investigation of such heavy liner implosions has begun. The status of the research will be presented.