ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
R. C. Kirkpatrick, D. Palmer Smitherman
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1311-1314
Innovative Approaches to Fusion Energy | doi.org/10.13182/FST96-A11963129
Articles are hosted by Taylor and Francis Online.
Magnetized target fusion (MTF) promises to ease the power and intensity requirements for a fusion driver. High gain MTF targets require fusion ignition to occur in the magnetized fuel. Ignition requires the energy deposited by the charged fusion reaction products to exceed that lost from the plasma by a variety of loss mechanisms. We have used single particle tracking through a magnetized plasma to obtain preliminary results on the DT alpha particle deposition as a function of the plasma ρR and BR for a uniform spherically symmetric volume with a uniform Bθ magnetic field. More complicated plasma density, temperature, and field distributions can be handled by the code, including 2-D distributions, but the efficiency of this approach makes extensive calculations impractical. A more efficient approach is needed, particularly for use in dynamic calculations. However, particle tracking is useful for obtaining information for building more accurate models of the deposition for use in survey codes.