ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
R. C. Kirkpatrick, D. Palmer Smitherman
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1311-1314
Innovative Approaches to Fusion Energy | doi.org/10.13182/FST96-A11963129
Articles are hosted by Taylor and Francis Online.
Magnetized target fusion (MTF) promises to ease the power and intensity requirements for a fusion driver. High gain MTF targets require fusion ignition to occur in the magnetized fuel. Ignition requires the energy deposited by the charged fusion reaction products to exceed that lost from the plasma by a variety of loss mechanisms. We have used single particle tracking through a magnetized plasma to obtain preliminary results on the DT alpha particle deposition as a function of the plasma ρR and BR for a uniform spherically symmetric volume with a uniform Bθ magnetic field. More complicated plasma density, temperature, and field distributions can be handled by the code, including 2-D distributions, but the efficiency of this approach makes extensive calculations impractical. A more efficient approach is needed, particularly for use in dynamic calculations. However, particle tracking is useful for obtaining information for building more accurate models of the deposition for use in survey codes.