ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Takashi Kato, Kunihiro Matsui, Susumu Shimamoto, Kazuhiko Nishida, Tadaaki Honda, Kazuya Hamada, Hiroshi Tsuji, Neil Michel, Kiyoshi Yoshida
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1253-1257
Fusion Magnet Systems | doi.org/10.13182/FST96-A11963120
Articles are hosted by Taylor and Francis Online.
One of the safety analysis for superconducting magnet system in International Thermonuclear Experimental Reactor (ITER) was carried out. The ITER cryostat will hold many superconducting magnets, such as twenty of toroidal field coils, a central solenoid coil, and seven poloidal coils. Loss of vacuum of the cryostat was considered as the worst assumption and the safety analysis of the magnets was examined when the assumption would be occurred. Accordingly, the loss of vacuum will cause the loss of thermal shield vacuum for the magnets and then a large heat transfer will be generated in the cryostat The magnet pressure and temperature will rise, bringing the magnets to quench. Such behavior was simulated by using a developed computer-aided calculation code. As a result of the calculation, a catastrophic phenomenon doesn't appear in the assumption. It is observed that a quasi-stable state, where the magnet temperature is kept to be less than 7 K, is maintained for more than 600 seconds. Thus, the magnet current can be slowly discharged like as the ordinal operation without magnet quench even in such worst assumption due to a large volume of the cryostat.