ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
M. Huguet, R. J. Thome, K. Okuno, N. Mitchell
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1241-1247
Fusion Magnet Systems | doi.org/10.13182/FST96-A11963118
Articles are hosted by Taylor and Francis Online.
In the six-year Engineering Design Activity (EDA) for the International Thermonuclear Experimental Reactor (ITER)1, some of the major R&D tasks are in the model coil program. One Central Solenoid (CS) and one Toroidal Field (TF) model coil are being designed and manufactured under the collaboration of the European Union, Japan, the Russian Federation and the USA. Both coils will demonstrate the manufacturing technology required for the full-scale coil systems and the CS model coil will be the largest 13 T superconducting system ever built (640 MJ). Forced-flow cooled superconductors are being manufactured in a shared effort by the four ITER Parties for the various stages of fabrication, that is, Nb3Sn superconducting strand production, cabling, jacket material manufacture, and jacketing of conductors. The coils will be tested in two separate facilities with participation by all Parties. Component R&D is also underway in areas such as conductor and joint performance, jacket and insulation material properties, and manufacturing processes for large steel structure fabrication. This paper summarizes the status of the program.