ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
M. Huguet, R. J. Thome, K. Okuno, N. Mitchell
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1241-1247
Fusion Magnet Systems | doi.org/10.13182/FST96-A11963118
Articles are hosted by Taylor and Francis Online.
In the six-year Engineering Design Activity (EDA) for the International Thermonuclear Experimental Reactor (ITER)1, some of the major R&D tasks are in the model coil program. One Central Solenoid (CS) and one Toroidal Field (TF) model coil are being designed and manufactured under the collaboration of the European Union, Japan, the Russian Federation and the USA. Both coils will demonstrate the manufacturing technology required for the full-scale coil systems and the CS model coil will be the largest 13 T superconducting system ever built (640 MJ). Forced-flow cooled superconductors are being manufactured in a shared effort by the four ITER Parties for the various stages of fabrication, that is, Nb3Sn superconducting strand production, cabling, jacket material manufacture, and jacketing of conductors. The coils will be tested in two separate facilities with participation by all Parties. Component R&D is also underway in areas such as conductor and joint performance, jacket and insulation material properties, and manufacturing processes for large steel structure fabrication. This paper summarizes the status of the program.