ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Anil Kumar, Yujiro Ikeda, Mahmoud Z. Youssef, Mohamed A. Abdou, Yoshitomo Uno, Hiroshi Maekawa
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1118-1128
Neutronics Experiments and Analyses | doi.org/10.13182/FST96-A11963099
Articles are hosted by Taylor and Francis Online.
The work reported herein was conducted in response to an ITER Task to demonstrate experimentally that pulsed and continuous operations of a D-T neutron source lead, in general, to differing impacts on inventory of induced radioactivity, on one hand, and to verify calculational methods, on the other. In a series of experiments conducted for the purpose, half lives of observed radioisotopes varied from 1 minute (25Na) to 271 days (57Co). Relatively short pulse lengths, 1 minute to 3 minute duration, were chosen. A pneumatic transport system was employed to transport foils of niobium, iron, aluminum. vanadium, nickel, and magnesium for irradiation close to the D-T neutron source. Three duty factors and two kinds of power levels were used for various neutron pulse trains.
The experimental data was processed to obtain ratio of inventories in pulsed to continuous operation scenarios for each of the observed radioisotope. We observe a large reduction in radioactive inventories for values of t1/2/p (half life/pulse duration) lying in the range of 1 to 10. Interestingly, random power pulse trains show even larger reduction in radioactive inventory: the ratio of inventories drops to ~0.14 for t1/2/p = 3.15 (27Mg) for a duty factor of 20% and a train of 10 pulses, whereas it would have hit a minimum of 0.33 for t1/2/p = 3.53 for constant power level.