ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE fast tracks test reactor projects: What to know
The Department of Energy today named 10 companies that want to get a test reactor critical within the next year using the DOE’s offer to authorize test reactors outside of national laboratories. As first outlined in one of the four executive orders on nuclear energy released by President Trump on May 23 and in the request for applications for the Reactor Pilot Program released June 18, the companies must use their own money and sites—and DOE authorization—to get reactors operating. What they won’t need is a Nuclear Regulatory Commission license.
Kunihiro Sato, Hideaki Katayama
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 299-303
Field Reversed Configuration and Neutron Sources | doi.org/10.13182/FST03-A11963619
Articles are hosted by Taylor and Francis Online.
Energy distribution of the 14.7MeV protons, which has energy spread of about 2 MeV due to the thermal motion of fuel ions, is derived analytically. Curvature drift of charged particles in an open magnetic field with a spiral configuration is estimated for separation of the 15MeV protons from thermal components. Numerical orbital calculation shows that amplitude of a wave about 1MV is necessary for trapping and deceleration of the proton beam in a traveling-wave direct energy converter (TWDEC). About 80% of the kinetic energy of the proton beam can be converted into electricity when bunching of the proton beam is improved by applying series of velocity modulations. Results of a computer simulation show that the TWDEC has desirable performance characteristics. The traveling wave with a designed frequency is excited spontaneously without any external power supply. The wave rapidly reaches an equilibrium state after loading, and stably responds to load fluctuations.