ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Kunihiro Sato, Hideaki Katayama
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 299-303
Field Reversed Configuration and Neutron Sources | doi.org/10.13182/FST03-A11963619
Articles are hosted by Taylor and Francis Online.
Energy distribution of the 14.7MeV protons, which has energy spread of about 2 MeV due to the thermal motion of fuel ions, is derived analytically. Curvature drift of charged particles in an open magnetic field with a spiral configuration is estimated for separation of the 15MeV protons from thermal components. Numerical orbital calculation shows that amplitude of a wave about 1MV is necessary for trapping and deceleration of the proton beam in a traveling-wave direct energy converter (TWDEC). About 80% of the kinetic energy of the proton beam can be converted into electricity when bunching of the proton beam is improved by applying series of velocity modulations. Results of a computer simulation show that the TWDEC has desirable performance characteristics. The traveling wave with a designed frequency is excited spontaneously without any external power supply. The wave rapidly reaches an equilibrium state after loading, and stably responds to load fluctuations.