ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
J. Kohagura, T. Cho, M. Hirata, T. Numakura, R. Minami, H. Watanabe, M. Yoshida, S. Nagashima, H. Ito, K. Yatsu, S. Miyoshi, T. Kondoh, J. Hori, T. Nishitani
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 271-273
Diagnostics | doi.org/10.13182/FST03-A11963611
Articles are hosted by Taylor and Francis Online.
Detailed plasma-physics investigations by the use of x-ray-tomography data supported by the fundamental theoretical studies of x-ray-detector responses enhance the importance of x-ray diagnostics for fusion-plasma analyses. However, degradation in responses of semiconductor x-ray detectors after fusion-produced neutron exposure still remains one of the most serious problems in recent fusion experiments even at this time. For the purpose of investigating and characterizing neutron effects on semiconductor x-ray detectors, detection characteristics of n-type silicon semiconductor detectors which are similar to those utilized for x-ray-tomography detectors in the Joint European Torus (JET) tokamak, are studied by the use of synchrotron radiation from a 2.5-GeV positron storage ring at the Photon Factory. The fusion neutronics source (FNS) of Japan Atomic Energy Research Institute is employed as well-calibrated deuterium-tritium (D-T) neutron source with fluences from 1013 to 1015 neutrons/cm2 onto these semiconductor detectors. Degradation in x-ray responses with increasing neutron fluences has been reported; however, our recent detailed investigations of detector responses show nonlinear dependence as a function of the neutron fluence.