ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
M. Hirata, S. Nagashima, T. Cho, J. Kohagura, M. Yoshida, H. Ito, S. Tokioka, T. Numakura, R. Minami, Y. Nakashima, T. Kondoh, K. Yatsu, S. Miyoshi
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 262-264
Diagnostics | doi.org/10.13182/FST03-A11963608
Articles are hosted by Taylor and Francis Online.
For the purpose of observations of the absolute values of ion-end-loss currents in open-field plasma devices including the GAMMA 10 tandem mirror, a newly developed electrostatic ion-current detector is proposed on the basis of a “self-collection” principle for secondary-electron emission from a metal collector. The newly developed ion-current detector is constructed with a set of parallelly placed metal plates with respect to lines of ambient magnetic forces in an open-ended device. One of the most essential characteristic properties of the proposed detector is based on the physics principle of a “self-collection” mechanism due to E×B drifts for secondary electrons impinged by ion-current collections from the metal-plate collector; that is, the secondary electrons are returned back into the collector through E×B drifts by the use of no further additional magnetic systems except the ambient open-ended fields B. The proposed idea is tested in an ion-beam line along with an additional set of the Helmholtz coil for producing and mocking up open-ended fields for simulating the GAMMA10 magnetic fields. The characterization experimental data in the ion-beam line give good agreement with computer-simulated trajectory-calculation results. The novel ion-current detector is preliminarily and usefully applied to the GAMMA10 plasma experiments.