ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
M. Hirata, S. Nagashima, T. Cho, J. Kohagura, M. Yoshida, H. Ito, S. Tokioka, T. Numakura, R. Minami, Y. Nakashima, T. Kondoh, K. Yatsu, S. Miyoshi
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 262-264
Diagnostics | doi.org/10.13182/FST03-A11963608
Articles are hosted by Taylor and Francis Online.
For the purpose of observations of the absolute values of ion-end-loss currents in open-field plasma devices including the GAMMA 10 tandem mirror, a newly developed electrostatic ion-current detector is proposed on the basis of a “self-collection” principle for secondary-electron emission from a metal collector. The newly developed ion-current detector is constructed with a set of parallelly placed metal plates with respect to lines of ambient magnetic forces in an open-ended device. One of the most essential characteristic properties of the proposed detector is based on the physics principle of a “self-collection” mechanism due to E×B drifts for secondary electrons impinged by ion-current collections from the metal-plate collector; that is, the secondary electrons are returned back into the collector through E×B drifts by the use of no further additional magnetic systems except the ambient open-ended fields B. The proposed idea is tested in an ion-beam line along with an additional set of the Helmholtz coil for producing and mocking up open-ended fields for simulating the GAMMA10 magnetic fields. The characterization experimental data in the ion-beam line give good agreement with computer-simulated trajectory-calculation results. The novel ion-current detector is preliminarily and usefully applied to the GAMMA10 plasma experiments.