ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
V. Piffl, Vl. Weinzettl, A. Burdakov, S. Polosatkin
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 231-236
Diagnostics | doi.org/10.13182/FST03-A11963601
Articles are hosted by Taylor and Francis Online.
An imaging spectroscopy becomes one of the fundamental method of the radial profile study of the light impurities line emission of high temperature plasmas. The application of the spherical dispersion elements (as diffraction grids and a multilayer mirrors) makes it possible an image of the radial profile of the chosen spectral line intensity.
The line spectrum measurements of the light impurities emission in 50 - 200 nm wavelength range at different plasmas equipment (tokamak CASTOR and GOL-3) has been provided by Seya-Namioka spectrometer equipped by spherical diffraction grid and a two dimensional detection system. The especial arrangement of the optical trace has been used for high imaging resolution in plasma radial direction.
The novel diagnostic method can provide the way of impurity transport investigation [1]. It is well known, the transport effects lead to some deviations of the radial distribution of the line emission density from those calculated using pure coronal equilibrium. They can be deduced from chordal measurements of the radial profiles of the spectral line intensity and or intensity ratios of spectral lines of different ionisation stages both measured by chord-integrating spectrometer.