ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Y. Nakashima, T. Cho, T. Fukasawa, H. Higaki, M. Hirata, H. Hojo, M. Ichimura, K. Ishii, Y. Ishimoto, M. K. Islam, A. Itakura, T. Ito, I. Katanuma, S. Kobayashi, J. Kohagura, Y. Kubota, R. Minami, T. Numakura, T. Saito, B. S. Saosaki, Y. Takemura, Y. Tatematsu, M. Yoshida, M. Yoshikawa, K. Yatsu
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 135-141
Transport and Confinement | doi.org/10.13182/FST03-A11963580
Articles are hosted by Taylor and Francis Online.
High-density experiments using newly applied ioncyclotron range of frequency (ICRF) wave and neutral beam injection (NBI) in the GAMMA 10 tandem mirror are described. A new ICRF wave system (RF3) with high harmonic frequency has been introduced for achieving high density. In addition, neutral beam injectors were recently installed at the central and anchor cells for fueling to target plasmas produced by ICRF waves. Arrays of Hα line-emission detectors are installed from the midplane of the central-cell to the anchor-cell in order to evaluate the particle source density around these regions. In a typical ICRF-heated hot-ion-mode plasma, both anchor and central NB's are injected together with the RF3 wave and the significant increase of the line-density in the central-cell up to ~8×1012 cm−2 was attained during the potential formation. It is confirmed that this high density is achieved under the ion temperature of three times higher than the value expected from the usual empirical boundary without using these new heating systems. An analysis of neutral particle transport using the Monte Carlo simulation code is developed to calculate the spatial profile of neutral density in non-axisymmetric region, such as anchor cell. Particle source rate is estimated based on detailed measurements of Hα line-emission from the central-cell to the east anchor-cell together with the neutral transport simulation.