ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Y. Nakashima, T. Cho, T. Fukasawa, H. Higaki, M. Hirata, H. Hojo, M. Ichimura, K. Ishii, Y. Ishimoto, M. K. Islam, A. Itakura, T. Ito, I. Katanuma, S. Kobayashi, J. Kohagura, Y. Kubota, R. Minami, T. Numakura, T. Saito, B. S. Saosaki, Y. Takemura, Y. Tatematsu, M. Yoshida, M. Yoshikawa, K. Yatsu
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 135-141
Transport and Confinement | doi.org/10.13182/FST03-A11963580
Articles are hosted by Taylor and Francis Online.
High-density experiments using newly applied ioncyclotron range of frequency (ICRF) wave and neutral beam injection (NBI) in the GAMMA 10 tandem mirror are described. A new ICRF wave system (RF3) with high harmonic frequency has been introduced for achieving high density. In addition, neutral beam injectors were recently installed at the central and anchor cells for fueling to target plasmas produced by ICRF waves. Arrays of Hα line-emission detectors are installed from the midplane of the central-cell to the anchor-cell in order to evaluate the particle source density around these regions. In a typical ICRF-heated hot-ion-mode plasma, both anchor and central NB's are injected together with the RF3 wave and the significant increase of the line-density in the central-cell up to ~8×1012 cm−2 was attained during the potential formation. It is confirmed that this high density is achieved under the ion temperature of three times higher than the value expected from the usual empirical boundary without using these new heating systems. An analysis of neutral particle transport using the Monte Carlo simulation code is developed to calculate the spatial profile of neutral density in non-axisymmetric region, such as anchor cell. Particle source rate is estimated based on detailed measurements of Hα line-emission from the central-cell to the east anchor-cell together with the neutral transport simulation.