ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
M. Ichimura, H. Higaki, S. Saosaki, S. Kakimoto, Y. Yamaguchi, K. Horinouchi, H. Hojo, K. Yatsu
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 69-72
Heating | doi.org/10.13182/FST03-A11963565
Articles are hosted by Taylor and Francis Online.
Three ICRF sources (RF1, RF2 and RF3) are used for the plasma production and heating in the GAMMA 10 tandem mirror. The initial plasma in a standard mode of operation is produced by using RF1 and RF2 with near fundamental ion cyclotron frequencies. Under the present experimental conditions, an eigenmode which has a fundamental radial structure is only excited and the density is clamped so as to satisfy the boundary conditions in the axial direction. When RF3 with a frequency range of high harmonic fast waves is applied, several eigenmodes with different radial structures can be excited and the density clamping is released. Two different frequencies are used in the RF3 system; one is 63 MHz which corresponds to the 10th harmonic ion cyclotron frequency near the midplane of the central cell and the other is 41.5 MHz. The density increase due to the excitation of the high harmonic fast waves are observed in both cases. It is observed the high energy ions are produced due to the higher harmonic resonance.