ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
T.D. Akhmetov, V.S. Belkin, I.O. Bespamyatnov, V.I. Davydenko, G.I. Dimov, Yu.V. Kovalenko, A.S. Krivenko, P.A. Potashov, V.V. Razorenov, V.B. Reva, V. Ya. Savkin, G.I. Shulzhenko
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 58-62
Overview | doi.org/10.13182/FST03-A11963563
Articles are hosted by Taylor and Francis Online.
At present the axisymmetric ambipolar mirror trap AMBAL-M consists of a central solenoid which is attached to a plugging and MHD stabilizing end system and is filled from the other end by a plasma stream generated by a gas-discharge source. In the first experiments we obtained the plasma in the solenoid with ~0.4 m diameter, density ~6·1012cm−3, electron temperature ~50 eV, and ion energy ~250 eV. In order to enhance the plasma flow from the source into the solenoid, the distance between the entrance throat of the solenoid and the plasma source was gradually decreased, and the plasma density was increased to ~2·1013 cm−3. Installation of a second source from the opposite end of the machine allowed us to increase the plasma density up to ~2.5·1013 cm−3 in the solenoid and up to ~1.5·1013 cm−3 in the mirror trap of the end system. For better propagation of the plasma stream from the second source into the trap the coil of the MHD-stabilizer semicusp was switched in the same direction as all other coils, thus the magnetic configuration consisted of a series of simple mirrors. However, the plasma remained MHD stable owing to its line-tying to conducting ends. When this line-tying broke during the fast cut-off of the source current, the density profile in the solenoid abruptly rearranged pointing to possible MHD activity, and independently of the initial shape it became almost flat up to the limiter.
Further enhancement of the plasma density was achieved using hydrogen puffing into the solenoid plasma while only the first source was functioning. Two methods of gas puffing were used – through a ceramic tube to the solenoid axis and into a gas-box surrounding the plasma. Optimization of the hydrogen puffing rate led to the density increase up to ~ 6·1013 cm−3 without noticeable degradation of the ion temperature which remained at a high level of ~200 eV (the ratio of the plasma pressure to the magnetic field pressure β~0.1), which is provided by stochastic ion heating from electrostatic oscillations when the source is working. The obtained solenoid plasma density is the highest one achieved in ambipolar mirror traps.