ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
M. Kwon, J. G. Bak, K. Choh, J. H. Choi, J. W. Choi, A. C. England, K. Hagisawa, J. S. Hong, S. J. Jeon, H. G. Jhang, Y. S. Jung, B. C. Kim, J. Y. Kim, S. S. Kim, W. H. Ko, M. C. Kyum, S. G. Lee, T. Lho, H. K. Na, B. H. Park, D. C. Seo, H. L. Yang, J. H. Yeom, S. J. Yoo, Hanbit Team
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 23-29
Overview | doi.org/10.13182/FST03-A11963558
Articles are hosted by Taylor and Francis Online.
The HANBIT device is a non axi-symmetric mirror being operated as a national users’ facility. Plasmas are routinely produced by ICRF at 3.5 MHz with a slot antenna with gas puffing and the line-integrated densities are in the range between 2×1012 and 1×1014 cm–2. The pulse length is normally 250 msec, but higher wall recycling happened usually after 100 msec into the discharge. Characterization and application of various methods of wall conditioning have been performed. Ion heating had been tried by RF with a double half-turn antenna, however, the heating effects were vaguely seen. Optimum heating schemes have been actively pursued with different heating method and antenna types. RF-induced electric fields have been known to affect the plasma stability. This effect of RF on stability seems important in HANBIT because of lacking of stabilizing mechanisms such as the minimum-B effect and the line-tying effect. In addition, stabilization by a hot electron ring generation and by other methods is being pursued. Detailed experimental results on these topics will be presented.