ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Meta’s new nuclear deals with Oklo and TerraPower: The details
Tech giant Meta is making big bets on TerraPower and Oklo. With the former, the hyperscaler could support the deployment of up to eight new reactors. With the latter, it could be as many as sixteen.
For both start-ups, Meta hopes its demand bolsters supply chains, the workforce, and the nuclear industry generally. For itself, the company is aiming to secure more generation to cleanly power its AI ambitions.
F.R. Chang Díaz
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 3-9
Overview | doi.org/10.13182/FST03-A11963555
Articles are hosted by Taylor and Francis Online.
The development of the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) was initiated in the late 1970s to address a critical requirement for fast, high-power interplanetary space transportation. While not being a fusion rocket, it nevertheless borrows heavily from that technology and takes advantage of the natural topology of open-ended magnetic systems. In addition to its high power density and high exhaust velocity, VASIMR is capable of “constant power throttling” a feature, which allows in-flight mission-optimization of thrust and specific impulse to enhance performance and reduce trip time. A NASA-led, research team, involving industry, academia and government facilities is pursuing the development of this concept in the United States. The technology can be validated, in the near term, in venues such as the International Space Station, where it can also serve as both a drag compensation device and a plasma contactor for the orbital facility. Other near-Earth applications in the commercial and scientific satellite sectors are also envisioned. This presentation covers the evolution of the VASIMR concept to its present status, as well as recent accomplishments in our understanding of the physics. Approaches and collaborative programs addressing the major technical challenges will also be presented.