ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Sellafield awards $6B ‘high hazard risk reduction’ framework contract
Sellafield Ltd., the site license company overseeing the decommissioning of the United Kingdom’s Sellafield nuclear site in Cumbria, England, has awarded a 15-year framework contract worth up to £4.6 billion ($6 billion) to support “high hazard risk reduction programs” at the site.
André L. Rogister
Fusion Science and Technology | Volume 41 | Number 2 | March 2002 | Pages 251-267
Transport and Instabilities | doi.org/10.13182/FST02-A11963524
Articles are hosted by Taylor and Francis Online.
Energy and particle transport rates in magnetically confined plasmas are often larger than neo-classical transport owing to binary collisions would allow. Anomalous transport, a major road block on the path to an economic fusion reactor, is a consequence of electric and magnetic fluctuations driven to supra thermal levels by various instability mechanisms. The linearly excited modes saturate by inducing a relaxation of the equilibrium profiles towards the marginally stable state, on the one hand, and via various non-linear interaction mechanisms, on the other hand. Specific instabilities, profile relaxation and non-linear interaction models are described and their successes and drawbacks are analysed in the light of observed characteristics of plasma confinement. A rough evaluation of the nuclear heating power required to balance the anomalous losses in the International Tokamak Experimental Reactor (ITER) is derived on the basis of the very qualitative mixing length estimate applied to electrostatic drift wave turbulence. Results from large-scale gyro-kinetic simulation codes are discussed.