ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
C. C. Tsai, G. C. Barber, A. Fadnek, S. L. Milora, P. M. Ryan, D. A. Rasmussen, D. O. Sparks, D. E. Schechter, W. L. Stirling
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 1130-1134
Plasma Engineering, Heating, and Current Drive | doi.org/10.13182/FST01-A11963397
Articles are hosted by Taylor and Francis Online.
Record beta and density values have been obtained at the Small Tight Aspect Ratio Tokamak in the United Kingdom Atomic Energy Agency (UKAEA) Fusion Culham Science Centre by using Oak Ridge National Laboratory's (ORNL's) neutral beam injector for plasma heating. This result has improved the prospects for a future spherical tokamak (ST) fusion core device. To address the physics issues of ST plasmas and the technology of neutral beam heating, ORNL neutral beam injectors have been installed on the Mega Amp Spherical Tokamak (MAST) at UKAEA Culham. The goal of the injectors is to provide a neutral beam heating power of 5 MW for 0.5 s, or up to 4 MW for 5 s. To achieve 5-s operation at the required power level of 4 MW, the existing oxide-filament cathode must be replaced with a cathode having long-pulse capability.
In 1983 ORNL developed an advanced positive ion source having long-pulse capability for 50-A and 80-keV hydrogen ion beams. The indirectly heated cathode technology developed for the advanced positive ion source will be utilized to fulfill requirements of long-pulse neutral beam heating on MAST plasmas. The cathode utilizes an electron emitter made of lanthanum oxide (La2O3) doped molybdenum. The cathode is heated by a graphite heater and insulated by a heat shield. The heat shield is made of multiple layers of tantalum sheet. Details of design and performance of such long-pulse cathodes are reported and discussed.