ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
C. C. Tsai, G. C. Barber, A. Fadnek, S. L. Milora, P. M. Ryan, D. A. Rasmussen, D. O. Sparks, D. E. Schechter, W. L. Stirling
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 1130-1134
Plasma Engineering, Heating, and Current Drive | doi.org/10.13182/FST01-A11963397
Articles are hosted by Taylor and Francis Online.
Record beta and density values have been obtained at the Small Tight Aspect Ratio Tokamak in the United Kingdom Atomic Energy Agency (UKAEA) Fusion Culham Science Centre by using Oak Ridge National Laboratory's (ORNL's) neutral beam injector for plasma heating. This result has improved the prospects for a future spherical tokamak (ST) fusion core device. To address the physics issues of ST plasmas and the technology of neutral beam heating, ORNL neutral beam injectors have been installed on the Mega Amp Spherical Tokamak (MAST) at UKAEA Culham. The goal of the injectors is to provide a neutral beam heating power of 5 MW for 0.5 s, or up to 4 MW for 5 s. To achieve 5-s operation at the required power level of 4 MW, the existing oxide-filament cathode must be replaced with a cathode having long-pulse capability.
In 1983 ORNL developed an advanced positive ion source having long-pulse capability for 50-A and 80-keV hydrogen ion beams. The indirectly heated cathode technology developed for the advanced positive ion source will be utilized to fulfill requirements of long-pulse neutral beam heating on MAST plasmas. The cathode utilizes an electron emitter made of lanthanum oxide (La2O3) doped molybdenum. The cathode is heated by a graphite heater and insulated by a heat shield. The heat shield is made of multiple layers of tantalum sheet. Details of design and performance of such long-pulse cathodes are reported and discussed.