ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Zaporizhzhia ‘extremely fragile’ relying on single off-site power line, IAEA warns
Europe’s largest nuclear power plant has just one remaining power line for essential nuclear safety and security functions, compared with its original 10 functional lines before the military conflict with Russia, warned Rafael Mariano Grossi, director general of the International Atomic Energy Agency.
T. Kakuta, S. Konishi, Y. Kawamura, M. Nishi, T. Suzuki
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 1083-1087
Tritium | doi.org/10.13182/FST01-A11963388
Articles are hosted by Taylor and Francis Online.
Electrochemical properties of the ceramic protonic conductor cell were investigated to evaluate its feasibility of hydrogen pumping for the purpose of tritium extraction in fusion fuel system. Experiments were performed at 873~1073K. One side of the cell was exposed to pure hydrogen and the other was exposed to 0.01~10 vol. % of hydrogen balanced with helium. Static and dynamic hydrogen pumping properties of the cell were evaluated. Electromotive force generated between two electrodes by the difference of hydrogen concentration was measured as static characteristics. In the region of the ratio of hydrogen partial pressure up to 100, the electrochemical potential driven by the difference of hydrogen partial pressure agreed well with the theoretical values derived from Nemst's law. The hydrogen pumping capacity was measured as the current density with applied DC. Hydrogen was selectively transferred at the current density of 7mA/cm2 at 873K and 9mA/cm2 at 973K, which satisfy our projected requirement (above 5mA/cm2) for applying to the blanket tritium recovery system. Voltage-induced degradation of the cell material accompanied with water vapor generation was observed, and voltage region to avoid this degradation was identified.