ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
T. Kakuta, S. Konishi, Y. Kawamura, M. Nishi, T. Suzuki
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 1083-1087
Tritium | doi.org/10.13182/FST01-A11963388
Articles are hosted by Taylor and Francis Online.
Electrochemical properties of the ceramic protonic conductor cell were investigated to evaluate its feasibility of hydrogen pumping for the purpose of tritium extraction in fusion fuel system. Experiments were performed at 873~1073K. One side of the cell was exposed to pure hydrogen and the other was exposed to 0.01~10 vol. % of hydrogen balanced with helium. Static and dynamic hydrogen pumping properties of the cell were evaluated. Electromotive force generated between two electrodes by the difference of hydrogen concentration was measured as static characteristics. In the region of the ratio of hydrogen partial pressure up to 100, the electrochemical potential driven by the difference of hydrogen partial pressure agreed well with the theoretical values derived from Nemst's law. The hydrogen pumping capacity was measured as the current density with applied DC. Hydrogen was selectively transferred at the current density of 7mA/cm2 at 873K and 9mA/cm2 at 973K, which satisfy our projected requirement (above 5mA/cm2) for applying to the blanket tritium recovery system. Voltage-induced degradation of the cell material accompanied with water vapor generation was observed, and voltage region to avoid this degradation was identified.