ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
J. F. Latkowski, S. Reyes, G. E. Besenbruch, D. T. Goodin
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 960-964
Safety and Environment | doi.org/10.13182/FST01-A11963365
Articles are hosted by Taylor and Francis Online.
We estimate possible ranges of tritium inventories for an inertial fusion energy (IFE) target fabrication facility producing various types of targets and using various production technologies. Target fill is the key subtask in determining the overall tritium inventory for the plant. By segmenting the inventory into multiple, parallel production lines–each with its own fill canister–and including an expansion tank to limit releases, it appears possible for a target fabrication facility to meet the accident dose goals of 10 mSv (1 rem) set forth in the Department of Energy's Fusion Safety Standards. For indirect-drive targets, we calculate release fractions for elements from lithium to bismuth and show that nearly all elements meet the dose goal. Our work suggests directions for future R&D that will help reduce total tritium inventories and increase the flexibility of target fabrication facilities.