ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
Kathryn A. McCarthy, David A. Petti, Hesham Y. Khater
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 951-955
Safety and Environment | doi.org/10.13182/FST01-A11963363
Articles are hosted by Taylor and Francis Online.
High temperature refractory alloys of tungsten, molybdenum and tantalum are under evaluation for use as structural materials in the Advanced Power Extraction Program (APEX) because of their ability to accommodate high wall loading and high temperature coolant. However, such materials tend to have undesirable safety and environmental characteristics relative to conventional reduced-activation fusion materials. These alloys have high decay heat and in some cases their activation results in the production of long-lived isotopes that would disqualify the material from being disposed of as low level waste. In addition, some of the alloys have oxides that are very volatile, which could be mobilized in accident scenarios in which air ingress is a concern. In this paper we compare the safety and environmental characteristics of these alloys with their low activation cousin (vanadium) in terms of decay heat, oxidation driven mobilization in air, and waste management.