ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Illinois legislature lifts ban on nuclear energy, funds clean energy
The Illinois General Assembly passed a clean energy bill on October 30 that would, in part, lift a 30-year moratorium on new nuclear energy in the state and create incentives for more energy storage.
S. Reyes, J. F. Latkowski, J. Gomez del Rio, J. Sanz
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 941-945
Safety and Environment | doi.org/10.13182/FST01-A11963361
Articles are hosted by Taylor and Francis Online.
SOMBRERO (solid moving breeder reactor) is a conceptual design of a 1000 MWe laser-driven inertial fusion energy (IFE) power plant. An important goal of the original study was the achievement of a safe and environmentally attractive reactor of relatively simple design. However, recent work has pointed out some key issues involving safety that were not completely addressed at that time, and which need to be reviewed in order to maximize the SOMBRERO design attractiveness.
The present work uses a set of computer codes traditionally used for magnetic fusion safety studies (CHEMCON, MELCOR), which have been adopted and adapted for use in IFE safety analysis. Here we consider a loss of flow accident (LOFA) combined with a simultaneous loss of vacuum accident (LOVA) produced by a breach in the confinement building. Although confinement failure would be a very unlikely event, it must be postulated in order to produce significant off-site doses. The CHEMCON code is used to simulate the long-term thermal transient in the reactor structures resulting from oxidation and radioactive decay heat. MELCOR is used to simulate a wide range of physical phenomena including thermal-hydraulics, heat transfer, aerosol physics and fusion product release and transport. As specified in the DOE Fusion Safety Standards, an off-site dose below 1 rem (10 mSv) is the requirement to avoid public sheltering and evacuation. The SOMBRERO accident analysis results will be evaluated according to this limit and suggestions will be made for improvements and future work.