ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
UNC, GE agree to clean up former New Mexico uranium mine
The United Nuclear Corporation (UNC) and General Electric Company will undertake a nearly $63 million, decade-long cleanup project at the former Northeast Church Rock Mine in northwestern New Mexico under a consent decree with the United States, the Navajo Nation, and the state of New Mexico.
Dennis L. Youchison, Mark T. North
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 899-904
Divertor and Plasma-Facing Components | doi.org/10.13182/FST01-A11963354
Articles are hosted by Taylor and Francis Online.
Helium-cooled, refractory heat exchangers are now under consideration for first wall and divertor applications. These refractory devices take advantage of high temperature operation with large delta-Ts to effectively handle high heat fluxes. The high temperature helium can then be used in a gas turbine for high-efficiency power conversion.
Over the last five years, heat removal with helium was shown to increase dramatically by using porous metal to provide a very large effective surface area for heat transfer in a small volume. Last year, the thermal performance of a bare-copper, dual-channel, helium-cooled, porous metal divertor mock-up was evaluated on the 30 kW Electron Beam Test System at Sandia National Laboratories. The module survived a maximum absorbed heat flux of 34.6 MW/m2 and reached a maximum surface temperature of 593 °C for uniform power loading of 3 kW absorbed on a 2-cm2 area. An impressive 10 kW of power was absorbed on an area of 24 cm2.
Recently, a similar dual-module, helium-cooled heat exchanger made almost entirely of tungsten was designed and fabricated by Thermacore, Inc. and tested at Sandia. A complete flow test of each channel was performed to determine the actual pressure drop characteristics. Each channel was equipped with delta-P transducers and platinum resistance temperature devices (RTDs) for independent calorimetry. One mass flow meter monitored the total flow to the heat exchanger, while a second monitored flow in only one of the channels.
The thermal response of each tungsten module was obtained for heat fluxes in excess of 5 MW/m2 using 50 °C helium at 4 MPa. Fatigue cycles were also performed to assess the fracture toughness of the tungsten modules. A description of the module design and new results on flow instabilities are also presented.