ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Koichiro Ezato, Satoshi Suzuki, Kazuyoshi Sato, Masaki Taniguchi, Masato Akiba
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 885-889
Divertor and Plasma-Facing Components | doi.org/10.13182/FST01-A11963351
Articles are hosted by Taylor and Francis Online.
Critical heat flux (CHF) tests on a new type of rectangular cooling tube, “a saw-toothed fin duct (SFD)” for high heat flux components, were performed under one-sided heating conditions. This tube has internal triangular fins at the heating side to enhance the CHF characteristics. The saw-toothed fin duct, which has a fin height of 3.46 mm and an installation angle of the fin of 70 deg, results in the highest CHF of 43 MW/m2 at the axial flow velocity of 10 m/sec. It was found that this value is 1.3 times higher than that of a rectangular fined tube, so-called hypervapotron. Finite element analyses on the saw-toothed fin duct were also performed to examine its thermomechanical behavior under high heat flux conditions. The results show the maximum strain amplitude in the fin bases are ranged less than 0.05% under the heat flux of 20MW/m2. From this result, the fatigue lifetime of the fin bases is estimated to be more than 106 cycles.