ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Koichiro Ezato, Satoshi Suzuki, Kazuyoshi Sato, Masaki Taniguchi, Masato Akiba
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 885-889
Divertor and Plasma-Facing Components | doi.org/10.13182/FST01-A11963351
Articles are hosted by Taylor and Francis Online.
Critical heat flux (CHF) tests on a new type of rectangular cooling tube, “a saw-toothed fin duct (SFD)” for high heat flux components, were performed under one-sided heating conditions. This tube has internal triangular fins at the heating side to enhance the CHF characteristics. The saw-toothed fin duct, which has a fin height of 3.46 mm and an installation angle of the fin of 70 deg, results in the highest CHF of 43 MW/m2 at the axial flow velocity of 10 m/sec. It was found that this value is 1.3 times higher than that of a rectangular fined tube, so-called hypervapotron. Finite element analyses on the saw-toothed fin duct were also performed to examine its thermomechanical behavior under high heat flux conditions. The results show the maximum strain amplitude in the fin bases are ranged less than 0.05% under the heat flux of 20MW/m2. From this result, the fatigue lifetime of the fin bases is estimated to be more than 106 cycles.