ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
S. Sharafat, M. Demetriou, N. Ghoniem, B. Williams, R. Nygren
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 863-867
Divertor and Plasma-Facing Components | doi.org/10.13182/FST01-A11963347
Articles are hosted by Taylor and Francis Online.
A novel concept for drastically improving the surface heat load capability of helium-cooled tungsten-alloy tubes is being developed for plasma facing components. The concept utilizes ultra-low density (90% porosity) W-foam, which is chemical-vapor-deposited inside a W-tube. The W-foam enhances the effective heat transfer coefficient inside the tube by significantly increasing the conduction path from the wall to the coolant fluid. A mockup of the W-tube/W-foam system has been constructed for testing at the helium loop and electron beam facility at Sandia National Laboratories, Albuquerque, NM. A finite element model (FEM) was constructed based on a 3-D solid model of the test section. The enhanced heat transfer coefficient was determined based on fundamental heat transfer principles through porous media. The porous tungsten heat exchanger tube exhibits a 3 fold improved surface heat load capability relative to a plain W-tube at temperatures above 1200°C.