ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Mahmoud Z. Youssef, Neil B. Morley, Dai-Kai Sze
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 839-845
Chamber Technology | doi.org/10.13182/FST01-A11963344
Articles are hosted by Taylor and Francis Online.
The nuclear performance of the thin Convective Liquid Flow First Wall (CLiFF) concept is investigated. Liquid walls offer the advantage of protecting solid structure behind them from excessive damage from neutrons originated in the plasma and thus have the capability for high power density applications; the central research focus of the Advanced Power Extraction (APEX) study. In the present parametric and scoping work, several combinations of liquid breeder and structure type where investigated. The aim is to maximize local tritium breeding ratio (TBR), power multiplication, and ensuring that the vacuum vessel and toroidal coils are protected from excessive radiation. The candidate liquid breeders considered are Li, Flibe, and Sn-Li. Vanadium-alloy is deployed with Li while either Ferritic steel or SiC is deployed with Flibe and Sn-Li. Deployment of other refractory alloys and their impact on TBR was also studied. The introduction of a beryllium multiplier zone in the blanket was shown to enhance tritium production capability, particularly for those liquid breeders whose TBRs are marginal.