ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
J. W. Sterbentz, J. E. O'Brien, R. A. Anderl, G. R. Smolik, D. A. Petti, K. A. McCarthy
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 773-778
Chamber Technology | doi.org/10.13182/FST01-A11963332
Articles are hosted by Taylor and Francis Online.
A preliminary design is presented for the FLIQURE or Fusion LIQUid Release Experiment. This experimental system is designed to measure the mobilization of tritium, fluorine, and other constituents in molten Flibe following trace neutron irradiation at fusion-relevant temperatures (500-1000°C). Trace neutron irradiation is achieved using a spontaneous fission 252Cf source that produces a relatively uniform concentration of tritium in the Flibe. The experimental goals aim to better understand the mechanisms, mobilization rates, and physiochemical forms of tritium mobilized from the Flibe along with other potentially detectable radioactive isotopes and toxic-material species under inert-gas, air, and steam-ingress conditions. System design details are discussed which include neutronic studies to optimize tritium production, thermal design to maintain and isolate molten Flibe, and instrumentation to meet experimental goals.